Complications of Hematopoietic Stem Cell Transplantation Requiring Intensive Care

Stephen M. Pastores, MD, MACP, FCCP, FCCM
Program Director, Critical Care Medicine
Department of Anesthesiology and Critical Care Medicine
Memorial Sloan Kettering Cancer Center
Professor of Medicine and Anesthesiology
Weill Cornell Medical College

Disclosures

- Clinical Trial Grant Support
 - Spectral Diagnostics (Septic shock trial)
 - Bayer HealthCare (Aerosolized amikacin for Gram-neg pneumonia in ventilated pts)
 - Asahi-Kasei (Thrombomodulin sepsis trial)
- Advisory Board
 - Theravance Biopharma
 - Bayer HealthCare

Indications for Hematopoietic Cell Transplant in the US, 2014

Annual Number of HCT Recipients in the US by Transplant Type
Allogeneic vs Autologous Stem Cell Transplantation

<table>
<thead>
<tr>
<th></th>
<th>Autologous</th>
<th>Allogeneic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Donor readily available</td>
<td>Immunotherapy (GvL-GvTumor) on top of cytoreductive Rx</td>
</tr>
<tr>
<td></td>
<td>No GvHD</td>
<td>No tumor cell transplantation</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>No GvL-GvTumor</td>
<td>Matching process</td>
</tr>
<tr>
<td></td>
<td>Graft potentially contaminated</td>
<td>aGvHD-cGvHD</td>
</tr>
<tr>
<td></td>
<td>Late toxicity</td>
<td>Late toxicity</td>
</tr>
<tr>
<td>RESULT</td>
<td>LOWER TRM INCREASED RR</td>
<td>RESULT: HIGHER TRM DECREASED RR</td>
</tr>
</tbody>
</table>

Stem Cell Sources
- Bone marrow
- Peripheral blood (most common)
 - More rapid hematologic reconstitution
 - More GVHD
- Cord blood
 - Less GVHD but slow hematologic and immunologic reconstitution

Types of Conditioning Regimen
- Myeloablative: classical form
 - Prolonged period of pancytopenia
- Nonmyeloablative (“mini”) or reduced intensity
 - Less early post-transplant morbidity
 - Allows older patients to receive HSCT (CLL, MM, HL)
 - 20% of all allogeneic HSCTs

Allogeneic HCT Recipients in the US, by Donor Type

Types of Conditioning Regimen
- Myeloablative: classical form
 - Prolonged period of pancytopenia
- Nonmyeloablative (“mini”) or reduced intensity
 - Less early post-transplant morbidity
 - Allows older patients to receive HSCT (CLL, MM, HL)
 - 20% of all allogeneic HSCTs
Causes of BMT Morbidity and Mortality

Early
- Mucositis
- Infection due to neutropenia
- Hemorrhagic Cystitis
- Cardiomyopathy
- Sinusoidal obstruction disease
- Graft rejection
- Graft-Versus-Host Disease
- Opportunistic infection
- EBV-PTLD
- Disease Recurrence
- Endocrine: growth, infertility, Cataracts, caries
- Secondary Malignancies

Late

Timeline of Noninfectious Complications

Reduced Mortality after Allogeneic Hematopoietic-Cell Transplantation

Improvements in HSCT

- Reduced intensity conditioning
- Better antimicrobial prophylaxis
- Pre-emptive therapy of CMV infections
- Improved antifungal therapy
- Improvements in intensive care
- Early use of noninvasive ventilation
- Early goal-directed therapy for septic shock
- Better patient selection
- Improved recognition of clinical deterioration & earlier ICU admission
- Use of palliative care for pts with a slim chance of recovery

Regimen Toxicity

- Regimen intensity
 - Myeloablative
 - Reduced intensity
 - Non-myeloablative

- Common Toxicities
 - Side effects of radiation and chemotherapy
 - Organ Toxicity
 - Mucositis
 - Bone marrow
 - Lung
 - Heart
 - Kidney
 - Liver
 - Nervous system

Organ Toxicity and Supportive Care

- Marrow toxicity
 - Neutropenia: factor support
 - Anemia: transfusional support
 - Thrombocytopenia: transfusional support

- Mucositis
 - Incidence and severity associated with regimen intensity & patient characteristics
 - Associated with pain & compromised nutritional intake
 - Management: Palifermin, oral care, pain control, TPN

- Nutritional Support

Pulmonary Complications after HSCT

- Engraftment syndrome
- Diffuse alveolar hemorrhage
- Idiopathic pneumonia syndrome
- Bronchiolitis obliterans

Engraftment Syndrome

- Seen primarily in autologous HSCT (7-10%)
- Develops 7-12 days post HSCT, around time of neutrophil recovery
- Associated with increased capillary leak
- Clinical presentation: dyspnea, fever and erythematous maculo-papular rash
- Chest imaging: bilateral ground-glass opacities, hilar or peri-bronchial consolidation
- Treatment: short course methylprednisolone 1mg/kg q12h
Diffuse Alveolar Hemorrhage (DAH)

- Incidence 2%-14% but with high mortality (>75%)
- Associated with infection, diffuse alveolar damage
- Clinical presentation: dyspnea, tachypnea, and hypoxia; hemoptysis is rare
- Chest imaging: patchy or diffuse opacities with air bronchograms
- Diagnosis: BAL - progressively hemorrhagic returns
- Treatment: moderate-high dose steroids + transfusion support, aminocaproic acid or recombinant human factor VII (refractory cases)

Diffuse Alveolar Hemorrhage

Am J Roentgenol 1991;157(3):461-4

Idiopathic Pneumonia Syndrome

- Evidence of diffuse lung injury after allogeneic transplant for which an infectious etiology is not identified.
- Incidence rate: 4-12%; median time of onset between 20 and 120 days after HSCT.
- Risk factors: old age, transplant for malignancy other than leukemia, pretransplant chemotherapy, TBI, GVHD, and (+) donor CMV serology.
- Diagnosis of exclusion.
- Treatment: high-dose steroids; etanercept (anti-TNF)
- Overall mortality: 50-90%, higher in pts requiring mechanical ventilation.

Alissa B. Peters SG. Curr Opin Oncol 2008;20:227-33

Bronchiolitis Obliterans

- Late (> 100 days) noninfectious complication after allo-HSCT
- More common after PBSCT, conventional myeloablative conditioning, & with busulfan-based prep regimens
- Risk factors: chronic GVHD, older age, airflow obstruction before transplant, & respiratory viral infections in 1st 100 days.
- Dry cough, dyspnea, wheezing, sinusitis
- Areas of hypoattenuation interspersed with ground-glass appearance on CT (“mosaic”)
- Treatment: high-dose steroids; reinstitution or augmentation of immunosuppressive agents; macrolides, inhaled steroids and montelukast

Cardiac Toxicity

- Pre-existing cardiac condition (coronary artery disease, prior regimen-related toxicity, disease-related – e.g. amyloidosis)
- Cardiomyopathy
 - Pre-existing
 - Related to specific drugs (e.g. cyclophosphamide)
- Arrhythmias
 - Pre-existing
 - Related to specific drugs (QTc prolongation)
 - Electrolyte abnormalities
- Hypertension
 - Calcineurin inhibitors

Acute Renal Toxicity

- Most common causes:
 - Acute tubular necrosis (ATN)
 - Drugs: calcineurin inhibitors, amphotericin B, aminoglycosides
 - Sinusoidal obstructive syndrome (SOS)
- Less common:
 - Tumor lysis syndrome
 - Thrombotic microangiopathy
 - Hemolysis due to ABO incompatibility
- Often multifactorial

Hepatic Sinusoidal Obstruction Syndrome (SOS) or VOD

- Triad:
 - Hepatomegaly with RUQ pain
 - Third spacing fluid retention, often including ascites
 - Jaundice (total bilirubin > 2.0 with cholestatic picture)
- Ancillary features:
 - Weight gain (>10%)
 - Increased platelet transfusion requirements
 - Coagulopathy
- Incidence:
 - Estimates vary from ~10-50%, per clinical criteria used.
 - Fatality high

SOS – Pathophysiology

- Damage to the endothelial lining of hepatic sinusoids
- Intrahepatic thrombosis and hemostasis
- Centrilobular hemorrhagic necrosis – this distinguishes lesion from (alcoholic) cirrhosis that involves portal triad
 - Portal vein obstruction
 - Liver failure with coagulopathy
 - Hepatorenal syndrome with hyperaldosterone state

SOS – Risk Factors and Diagnosis

• Risk Factors:
 – Preexisting liver conditions: Hepatitis (viral, drug-induced), Cirrhosis
 – Prior therapy: Second transplant, significant therapy prior
 – Conditioning regimen: Ablative regimens (high-doses of radiation therapy, use of busulfan), sirolimus in patients undergoing ablative transplants

• Diagnosis:
 – Clinical suspicion
 – Ultrasound: ascites, abnormal portal vein waveform, reversal of flow in the portal vein, increased hepatic artery resistance index.
 – Liver biopsy

SOS - Treatment

• Prevention:
 – Low-dose heparin
 – Ursodeoxycholic acid (Ursodiol)
 – Defibrotide (in high-risk children)

• Treatment:
 – Supportive care (euvolemia, avoid hepatotoxins, pain control, paracentesis)
 – Defibrotide: 20%-30% response rate
 • 6.25 mg/kg IV q 6h x 21 days
 – No role for TPA/heparin, antithrombin

Neurological Complications

• Infections
• Chemotherapy toxicity: fludarabine
• Calcineurin inhibitors (CNI) toxicity

Posterior reversible encephalopathy syndrome (PRES)

Richardson PG, et al. BBMT 2010;16:1005-17
Mosekilde et al. BMT 2007; 39:653-4
Graft-versus-Host Disease

- 30-70% of allogeneic HSCT develop GVHD.
- Acute
 - < 100 days (usually 30-40)
 - Skin, liver, GI tract
 - T cell and cytokine mediated
- Chronic
 - 100 days
 - “autoimmune like” syndrome
 - B cell mediated
- Overlap Syndrome

GVHD Risk Factors

- Degree of HLA-mismatch
- # T cells in graft
- Age of recipient (and donor)
- Gender
- Parity of donor
- Intensity of conditioning regimen
- CMV and other co-infections
- Source of stem cells

Acute GVHD: Clinical Classification

<table>
<thead>
<tr>
<th>Stage</th>
<th>Skin (extent of rash)</th>
<th>Liver (Bilirubin)</th>
<th>LGI tract (Volume diarrhea/day)</th>
<th>UGI tract</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maculopapular rash <25% BSA</td>
<td>2.1 – 3 mg/dL</td>
<td>501 – 1000 mL</td>
<td>Persistent nausea, vomiting, or anorexia</td>
</tr>
<tr>
<td>2</td>
<td>25-50% BSA</td>
<td>3.1 – 6 mg/dL</td>
<td>1001 – 1500 mL</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>>50% BSA</td>
<td>6.1 – 15 mg/dL</td>
<td>>1500 mL</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Generalized erythodema with bullae and/or desquamation</td>
<td>>15 mg/dL</td>
<td>Severe abdominal pain and/or clinical ileus, with or w/o hematochezia</td>
<td></td>
</tr>
</tbody>
</table>

Therapy of Acute GVHD

- Skin-directed: topical steroids
- Grade II or higher:
 - 1st line: Methylprednisolone 2 mg/kg/day IV
 - 2nd line: Mycophenolate mofetil, etanercept, pentostatin, sirolimus, ATG, OKT3 and anti-CD3 antibodies and other monoclonal antibodies
 - Mesenchymal stem cells (promising)
- Poor long-term survival with steroid-resistant GVHD

Drug Toxicity – GVHD “drugs”

- CNI (cyclosporine, tacrolimus):
 - Renal dysfunction, electrolyte abnormalities (K, Mg).
 - Hypertension
 - Neurological side effects: tremor (common), seizures (rare), ataxia, cortical blindness (rare), peripheral neuropathy.
 - Other: liver toxicity, hyperglycemia, hirsutism, hemolytic anemia (rare), AHUS (rare).
- Sirolimus (mTOR inhibitor)
 - Hypertriglyceridemia, hypercholesterolemia
 - Myelosuppression (mild).
 - Other: AHUS (rare), SOS (in combination with busulfan).
- Mycophenolate mofetil (MMF)
 - Myelosuppression
 - GI symptoms: nausea, anorexia and diarrhea

Infectious Complications

- Leading cause of death after allogeneic HSCT
- Major factors for infection:
 - Neutropenia and qualitative defects in phagocytosis
 - Humoral immune deficiency
 - Cellular immune deficiency or dysfunction
 - Impaired mucosal integrity
Bacterial Infections

• Risk factors:
 – Neutropenia, mucocutaneous damage, indwelling catheter
 – Common infections:
 – Aerobic gram-positive and gram-negative bacteria
 – Clostridium-difficile
 – Important to know local antibiotic-resistance patterns

Viral Infections

• Herpes Simplex Virus (HSV)
 – Reactivation (only seropositive patients at risk)
 – Prophylaxis with acyclovir
• Respiratory viruses
 – Seasonal fluctuation
 – Common pathogens: Respiratory syncitial virus (RSV), parainfluenza, rhinovirus, influenza A and B, metapneumovirus
 – Can be fatal
 – Infection control, droplet precautions, hand washing (!)
• Cytomegalovirus (CMV)
• Human Herpes Virus 6 (HHV6)
• Epstein-Barr Virus
• Adenovirus
• BK Virus (hemorrhagic cystitis)

CMV

• Historical data:
 – 70 – 80% risk of reactivation in CMV seropositive allo-HCT recipients
 – 1/3 of patients with reactivation developed CMV disease (pneumonitis, hepatitis, colitis)
 – Interstitial pneumonia was a major cause of death in the first 3 months; 50% due to CMV
• Risk factors:
 – CMV seropositive patient
 – Allogeneic HCT
 – T cell depletion (in vitro/in vivo)
 – Cord blood recipient
 – GVHD (due to added immune suppression)
Agents to Treat CMV

- **Ganciclovir**: 5 mg/kg q 12h induction therapy for 7-14 days then 5 mg/kg daily for maintenance therapy
 - Valganciclovir: 900 mg PO twice daily x 21 days during induction then single daily dosing
 - Toxicity: Bone marrow suppression (leukopenia)
- **Foscarnet**: 90 mg/kg q 12 hours for 2 weeks, then 120 mg/kg daily for ≥2 weeks
 - Toxicity: Renal failure
- **Cidofovir**: for CMV retinitis; 5 mg/kg IV once weekly for 2 weeks then 5 mg/kg IV once q 2 weeks as maintenance (with probenecid)
 - Toxicity: Renal failure

HHV-6 Infection

- Reactivation occurs in 30%-50% after allogeneic HSCT
- Often manifests as HHV-6 viremia and typically occurs 2-4 weeks after transplant
- Detection of HHV-6 DNA in plasma or serum correlates well with viremia and seroconversion
- Presentation
 - Encephalitis (confusion, short-term memory loss and/or anterograde amnesia with or without seizures)
 - HHV-6 DNA is usually detected in CSF
 - MRI: hyperintensities in medial temporal lobes
 - Others: delirium, bone marrow suppression, pneumonitis
- **Treatment**:
 - Foscarnet or Ganciclovir

When to start preemptive therapy?

<table>
<thead>
<tr>
<th>Immuno- suppression</th>
<th>CMV doubling time</th>
<th>Risk Groups</th>
<th>CMV Plasma DNA Level to Start PET at HICRC**</th>
<th>CMV Whole Blood DNA Level to Start PET at Karolinke Institute**</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Short</td>
<td>Any level 1</td>
<td>Any level 1</td>
<td>Any level 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cord blood</td>
<td>1000 copies</td>
<td>1000 copies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allograft</td>
<td>> 100 copies/mL</td>
<td>> 1000 copies/mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Low dose steroids*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Anti-HLA antibodies*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- CD4<500 cells*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allograft</td>
<td>> 500 copies/mL</td>
<td>> 1000 copies/mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- after day 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Any level 1</td>
<td>Any level 1</td>
<td>Any level 1</td>
</tr>
</tbody>
</table>

1. Average or normal weekly or twice weekly (highest only); last of albumin ≥50 expander
2. HIA: human leukocyte antigen
3. Calculated in terms of 500 copies/mL of DNA

Boeckh M, Blood 2009;113:5711-19
Adenovirus

- Incidence: reactivation is common, but disease is rare (< 2%)
- Risk factors: similar to CMV (immune suppression), more common in children
- Clinical presentation:
 - Pneumonitis
 - Nephritis
 - Hemorrhagic enteritis
 - Hemorrhagic cystitis
 - Disseminated disease with multiorgan failure
- Treatment
 - Cidofovir

Fungal Infections

- Candida
 - Risk factors: severe neutropenia, broad-spectrum antibiotics, mucocutaneous damage, colonization
- Molds (Aspergillus, Fusarium, Zygomycetes)
 - Risk factors: allogeneic HCT, delayed engraftment, prior history, GvHD
 - Standard antifungal prophylaxis recommended

NCCN Guidelines for Prevention of IFI

<table>
<thead>
<tr>
<th>Disease</th>
<th>Prophylaxis</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autologous HCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With mucositis</td>
<td>Fluconazole (Category 1)</td>
<td>Until engraftment</td>
</tr>
<tr>
<td>Without mucositis</td>
<td>Micafungin (Category 1)</td>
<td></td>
</tr>
<tr>
<td>Allogeneic HCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutropenic</td>
<td>Fluconazole (Category 1)</td>
<td>> 75 days</td>
</tr>
<tr>
<td></td>
<td>Micafungin (Category 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voriconazole (Category 2B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Posaconazole (Category 2B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amphotericin B products (Cat 2B)</td>
<td></td>
</tr>
<tr>
<td>Severe GVHD</td>
<td>Posaconazole (Category 1)</td>
<td>Until resolution of significant GVHD</td>
</tr>
<tr>
<td></td>
<td>Voriconazole (Category 2B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Echinocandin (Category 2B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amphotericin B products (Cat 2B)</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from NCCN Guidelines Version 1. 2012

Invasive Pulmonary Aspergillosis

- Clinical presentation: dyspnea, chest pain and hemoptysis
- Chest imaging: patchy bronchopneumonia or multiple nodular lesions; CT may show peripheral wedge-shaped infarcts or “halo or air-crescent sign”
- Biomarkers: Galactomannan, BD-glucan
- Treatment: Voriconazole, Isavuconazole (also useful for Mucor)
CT Findings in IPA

Pneumocystis Jiroveci Pneumonia

- Prophylaxis is standard
 - Until completion of immune suppression
 - At least until CD4 >200
- Trimethoprim/sulfamethoxazole (Bactrim) – also provides prophylaxis against toxoplasma, S. pneumoniae and other community-acquired pneumonia
- Aerosolized pentamidine
- Dapsone
- Atovaquone - also provides prophylaxis against toxoplasma

Toxoplasmosis

- Highly virulent infection
- Nearly 100% fatal
- Sepsis-like syndrome
- High fever
- Typically 30 – 120 days after HCT
- More closely linked to host than donor serostatus
- PCR monitoring available
- Standard prophylaxis with Bactrim or atovaquone

ICU Management

- Common indications for ICU admission of the BMT patient
 - Sepsis
 - SOS
 - Respiratory failure due to DAH, infection, volume overload
 - Acute kidney injury, cardiovascular and neurological issues
- Multidisciplinary management
 - ICU team, BMT, ID, Renal
- Mortality remains high (< 20% for ventilated pts at 6 mo)
- Risk factors for mortality:
 - Mechanical ventilation
 - Hemodynamic instability/shock requiring vasopressors
 - GVHD, hepatic failure
 - “Standard factors”: high APACHE II score, high lactate

Naeem N et al, BMT 2006; 37:119-133;
ICU Outcomes of Allogeneic HSCT after Reduced Intensity Conditioning

• N=102, French ICU
• Short-term outcomes encouraging
 – ICU mortality: 39.2%; Hospital: 59.8%
• Poor outcome variables:
 – Use of invasive mechanical ventilation
 – High SAPS II score
 – Longer time between diagnosis of malignancy and HSCT

Mokart D, J Crit Care 2015;30:1107-13

• N=161, MSKCC ICU
• ICU mortality: 64.6%; Hospital: 46%
• 5-yr survival: 20%
• Poor ICU outcome variables:
 – Use of invasive mechanical ventilation
 – Vasopressors
 – Hemodialysis

June 27, 2016:1-9

Summary

• Early complications after HSCT are related to:
 – Conditioning regimen
 – Patient’s co-morbidities
 – Underlying disease
• Improvements in treatment-related mortality result from:
 – Better donor selection (improvement in HLA-typing)
 – Patient selection
 – Advances in conditioning regimens
 – Improvements in supportive care
Thank You

pastores@mskcc.org