A Novel Radiosensitizing Agent for the Treatment of Chordoma

Colwell N.A., Hao S., Song H., Sizdahkhani S., Ho W., Zhang W., Maric D.R., Bailey R.K., Rodriguez V.W., Gilbert M.R., & Park D.M.

Miami Neuro Symposium, 5th Annual
The Biltmore Hotel, Coral Gables, FL
2 December 2016
Disclosures

• Experimental use in animal models

• No human subjects

• Not currently FDA approved for any indication

Learning Objectives

• Describe current management strategies for intracranial chordoma and cite potential mechanisms of therapeutic resistance

• Explain how effectiveness of radiation therapy can be influenced by tumor cell cycle and DNA repair mechanisms

• Understand relevance of protein phosphatase 2a (PP2a) inhibition and potential role in combination with radiotherapy

Epidemiology

• 300 cases/year

• Intracranial chordoma survival
 – 5-year: 63%
 – 10-year: 16%

Biology

- Low grade
 - Locally aggressive
- Notochord remnant

Location = axial skeleton
- Clivus (32%)
- Spine (32.8%)
- Sacrum (29.2%)

Current Management Strategies:

Surgery

- Radical (vs. incomplete) resection most important predictor of survival ($p < 0.001$)

- Endoscopic (vs. open) approach achieved complete resection more often (61 vs. 48%; $p=0.010$) with less morbidity

Current Management Strategies:

Radiation Therapy (1/3)

- RT commonly used for following cases:
 - Recurrence
 - Incomplete resection
 - “Unresectable” tumor

- Dose-response relationship above effective dose of 65 Gy

Current Management Strategies: Radiation Therapy (2/3)

- Radioresistant tumor
 - Proximity to critical neuroanatomy
- Proton beam radiotherapy (PBRT):
 - Precise, high dose can be administered

Current Management Strategies: Radiation Therapy (3/3)

- PBRT (vs. Conventional RT): prolonged recurrence-free survival
 - 4-year RFS: 91 vs. 19%
- Severe toxicity seen with doses >72 CGE (standard dosing)

Current Management Strategies: Unmet Need

- Reduce effective dose of RT needed in order to preserve function of healthy surrounding neuroanatomy
 - (aka “radiosensitize” chordoma cells)
Learning Objectives

• Describe current management strategies for intracranial chordoma and cite potential mechanisms of therapeutic resistance

• Explain how effectiveness of radiation therapy can be influenced by tumor cell cycle and DNA repair mechanisms

• Understand relevance of protein phosphatase 2a (PP2a) inhibition and potential role in combination with radiotherapy

Table 1: Cell-cycle distribution and DNA contents of the three cell lines

<table>
<thead>
<tr>
<th>Cell line</th>
<th>G1 phase</th>
<th>S phase</th>
<th>G2/M phase</th>
<th>DNA content</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-CH1</td>
<td>22.5%</td>
<td>17.0%</td>
<td>60.5%</td>
<td>2.0x normal</td>
</tr>
<tr>
<td>U-CH1 (h)</td>
<td>64.0%</td>
<td>21.0%</td>
<td>15.0%</td>
<td>2.0x normal</td>
</tr>
</tbody>
</table>

Note: Cells were treated with X-rays at a dose of 0.5 Gy and harvested at 48 hours. Means with a standard DNA content in normal control (2.0x normal) are indicated in italics.

LB100: novel inhibitor of PP2a

Learning Objectives

• Describe current management strategies for intracranial chordoma and cite potential mechanisms of therapeutic resistance.

• Explain how effectiveness of radiation therapy can be influenced by tumor cell cycle and DNA repair mechanisms.

• Understand relevance of protein phosphatase 2a (PP2a) inhibition and potential role in combination with radiotherapy.

Study Aims

• Evaluate efficacy of combination LB100 and radiotherapy against chordoma in vitro.

• Identify mechanisms responsible for hypothesized increase in radiosensitivity.

Methods

<table>
<thead>
<tr>
<th>Cell Lines</th>
<th>UCH-1; UCH-2 Human chordoma cell lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>LB100 administered 3h prior to RT</td>
</tr>
<tr>
<td>Radiation</td>
<td>3.09 Gy/min Cesium-source irradiator</td>
</tr>
<tr>
<td>Cytotoxicity</td>
<td>Cell Counting (Trypan blue)</td>
</tr>
<tr>
<td>Cell cycle analysis</td>
<td>FACS (Flow cytometry)</td>
</tr>
<tr>
<td>DNA repair</td>
<td>Immunofluorescence microscopy</td>
</tr>
</tbody>
</table>
Results:
LB100 enhances cytotoxic effect of radiation in vitro

Results:
LB100 lifts cell cycle arrest and increases percentage of cells in G2/M phase

Results:
LB100 inhibits cellular repair of dsDNA breaks after radiation
Conclusions:
• Surgery +/- Adjuvant RT
 – Mainstays of treatment for intracranial chordoma
• Dose limiting toxicities
 – Need for radiosensitization of tumor cells
• PP2a can increase RT effectiveness via:
 – Increasing % of tumor cells in G2/M (radiosensitive) phase of cell cycle
 – Preventing tumor cell from repairing DNA damage induced by RT

Current / Future Directions:
• Animal studies
 – Subcutaneous flank model (IL2Rg null mice)
• Phase I Clinical Study (complete)
 – LB100: Safe for use in humans
 – Phase II study to evaluate efficacy in chordoma

Acknowledgements
• Mark Gilbert, MD
• Shuyu Hao, MD
• Hua Song, MD
• Deric Park, MD
• Neuro-Oncology Branch, NCI
• John Heiss, MD
• Saman Sirdabkhani, BS
• Winston Ho, MD
• Surgical Neurology Branch, NINDS
• Medical Research Scholars Program, NIH
• Florida International University
 Herbert Wertheim College of Medicine
• Sergio Gonzalez-Arias, MD, PhD
• Baptist Health South Florida