Neuromuscular Disease and Liberation from Mechanical Ventilation
Edward M Manno M.D FNCS, FCCM, FAAN, FANA, FAAN.
Professor of Medicine Cleveland Clinic Lerner College of Medicine Case Western University.

Disclosures
• Financial none
• President of the NeuroCritical Care Society

Neuromuscular disease
• Metamorphosis in this course over last 5-10 years
• Approach these processes from the Neuro intensivists perspective
 – Will not spend a lot of time on the diagnosis
 – Will spend on time on what to do in specific clinical situations.
Neurogenic Respiratory Failure

• Definition
 – Respiratory failure due to difficulties with
 • Motor neurons (Cell bodies)
 • Axons
 • Neuromuscular junction
 – Pre synaptic
 – Post synaptic
 • Muscle
 – Not due to primary pulmonary problems

Neurogenic Respiratory Failure: Overview

• Clinical Presentation
 – Patterns of Weakness
 • Respiratory
 • Bulbar
 • Appendicular
 – Pulmonary function tests
 – Blood gases
 – Timing of intubation

Neurogenic Respiratory Failure: Specific diseases and treatments

• Amyotrophic lateral sclerosis
• Myasthenia Gravis
 – Lambert- Eaton Syndrome
• Guillain-Barre Syndrome
• Critical Illness Neuropathy
• Critical Illness Myopathy
• Other
 – Isolated phrenic neuropathies, plexopathies
 – Rhabdomyolysis, acute myopathies
 – Botulism, tick paralysis
Clinical Presentation

- Generalized fatigue, vague paraesethias, ascending paralysis (GBS)
 - May have been preceded by viral illness or vaccination
- Diplopia, dysphagia, vary degrees of appendicular weakness (MG)
- Progressive dyspnea
- Dysautonomia
 - Fluctuating blood pressure
 - Cardiac arrhythmias

Respiratory weakness

- Neuromuscular weakness
 - Decreased vital capacity compensated by increases respiratory rate
 - Progressive atelectasis
 - Cough weakens
 - Expiratory flow rates decrease
 - Intrinsic sigh is lost
 - Increased work of breathing
 - Exacerbates weakness in MG
 - Cannot be compensated in GBS

Respiratory weakness

- Hypercapnia
 - Late sign
 - Hypoventilation sign of impending Respiratory collapse
Respiratory weakness

- Normal – 65-70 cc/kg Tidal volumes
- Weak cough – 30cc/kg
- Atelectasis – 20-25 cc/kg
- Sigh lost, atelectasis and shunting 15 cc/kg
- Hypoventilation – 10 cc/kg
- Hypercapnia – 5-10 cc/kg

Respiratory weakness

- Arterial blood gases
 - Initial changes
 - Subtle drop in oxygen levels with the development of atelectasis
 - Later changes
 - Mild hypercapnia with normal pH
 - Rapid deterioration with apnea
Laboratory Values in Monitoring Acute Neuromuscular Failure

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Procedure</th>
<th>Normal value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vital capacity</td>
<td>Max exhalation</td>
<td>40-70 mL/kg</td>
</tr>
<tr>
<td>Maximal inspiratory pressure</td>
<td>Max sucking in</td>
<td>M >-100 cm H₂O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P >-70 cm H₂O</td>
</tr>
<tr>
<td>Maximal expiratory pressure</td>
<td>Max blowing out</td>
<td>M >200 cm H₂O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P >140 cm H₂O</td>
</tr>
</tbody>
</table>

Respiratory weakness

Respiratory parameters
- Forced vital capacity
 - Generally intubate if <10cc/kg
 - May be underestimated by respiratory tech
 - Similar flow volume loops as COPD
 - Prolonged tail due to extended exhalation time
 - Count to 30 on one breath
 - Cheap but effective way to estimate VC
 - Approximately 2 Liters
- Neck flexors and proximal muscle strength correlate best with respiratory strength

Negative Inspiratory Force
- Better predictor < 20
 - Muscle strength
 - Need for intubation
- Can be underestimated
 - Weak seal around device
 - Facial weakness
 - MG
 - Miller fisher variant of GBS
Respiratory weakness

• Clinical findings (Not all patients will have)
 – Dyspnea
 • VC is half of predicted
 – Brow sweating
 – Accessory muscle use

• INTUBATION SHOULD BE BASED UPON THE CLINICAL PRESENTATION, RATE OF RESPIRATORY DECLINE, AND PULMONARY FUNCTION TESTS
NEUROINTENSIVIST WORRIES

- Respiratory failure (both mechanical and pulmonary)
- Dysautonomia
- Procedure complications (PLEX)

Guillain-Barre Disease (Acute Inflammatory demyelinating polyneuropathy)

- Autoimmune process
 - Effects myelin sheath of peripheral nerves
 - Humoral attack may be induced by viruses, vaccinations
 - Demyelination slows conduction along nerves
 - Leads to progressive weakness
 - Axonal variant

MGH Series

Retrospective Series n=169

- Diarrhea 6%
- Malaise 8%
- Pneumonia 3%
- Surgery 1%
- No prior illness 39%
- Upper respiratory tract infection 8%

Prospective Series n=120

- Diarrhea 10%
- Upper respiratory tract infection 49%
- Pregnancy 1%
- Surgery 8%
- No prior illness 30%
- Upper respiratory tract infection 5%
- CMV 3%
- Pneumonia 2%
- Hodgkin's disease 5%
- SLE vaccination 9%

Ropper, Wijdicks, Truax, 1991
Diagnostic Criteria for GBS

- **Strongly supportive features**
 - Progression of symptoms over 4 weeks
 - Symmetric legs greater than arms weakness
 - Mild sensory symptoms
 - Cranial nerve involvement especially bilateral facial weakness
 - High protein content in the CSF with < 10 cells
 - EMG/NCV: Conduction block, increased F waves and distal latencies

Treatment for GBS

- **Supportive**
 - Respiratory
 - Treat dysautonomia
 - Deafferentate cardiac and baroreceptors
 - Pseudoobstruction
 - DVT prophylaxis
- **Plasma Exchange** *No role for BiPAP in GBS*
- **IVIG**
- **Steroids not helpful**
 - Evaluate for CIDP
Plasma Exchange Trials in GBS

<table>
<thead>
<tr>
<th></th>
<th>North American study</th>
<th>Conventional study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days to reach grade 2</td>
<td>53</td>
<td>85</td>
</tr>
<tr>
<td>Patient improved at least 1 grade at 6 mo (%)</td>
<td>97</td>
<td>87</td>
</tr>
<tr>
<td>Patients walking independently at 6 mo (%)</td>
<td>82</td>
<td>71</td>
</tr>
</tbody>
</table>

French study

<table>
<thead>
<tr>
<th></th>
<th>n=111</th>
<th>n=109</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days to onset motor recovery (median)</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Days weaning (median)</td>
<td>18</td>
<td>31</td>
</tr>
<tr>
<td>Days to recover walking without assistance (median)</td>
<td>70</td>
<td>111</td>
</tr>
</tbody>
</table>

Corticosteroid Studies Disability Grade Change After 4 Weeks

<table>
<thead>
<tr>
<th>Study</th>
<th>Control No.</th>
<th>WMD (95% CI fixed)</th>
<th>Weight (%)</th>
<th>WMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBS Steroid, 1993</td>
<td>124</td>
<td>87.7</td>
<td>0.070</td>
<td></td>
</tr>
<tr>
<td>Hughes, 1978</td>
<td>21</td>
<td>9.4</td>
<td>-0.500</td>
<td></td>
</tr>
<tr>
<td>Shukla, 1988</td>
<td>6</td>
<td>3.0</td>
<td>-0.210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>151</td>
<td>100.0</td>
<td>0.008</td>
<td></td>
</tr>
</tbody>
</table>

Chi-square 1.44 (df=2) Z=0.06

Hughes. The Cochrane Library (2), 1999

Duration of Ventilation in Recent Large Series

<table>
<thead>
<tr>
<th>Descriptive studies</th>
<th>Ventilated No.</th>
<th>Median duration of ventilation (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayo Clinic 1974-79</td>
<td>79</td>
<td>37</td>
</tr>
<tr>
<td>MGH Prospective 1981-88</td>
<td>85</td>
<td>49</td>
</tr>
<tr>
<td>Queen Square ICU 1985-92</td>
<td>79</td>
<td>21</td>
</tr>
<tr>
<td>Southeast England 1993-94</td>
<td>79</td>
<td>19</td>
</tr>
</tbody>
</table>
Pulmonary Function Ratio

\[PF = \frac{\text{at day 12}}{\text{at intubation}} \geq 1 \]

Pulmonary Function Score

\[\text{VC} + \text{PI max} + \text{PE max} \]

\[(\text{mL/kg}) \quad (\text{cm H}_2\text{O}) \quad (\text{cm H}_2\text{O}) \]

Prognosis GBS

- Depends upon degree and extent of Axonal damage
 - Demyelination alone will recover within days to weeks
 - Axonal damage with intact myelin sheaths will recover within months
 - Most patients will make a complete recovery
 - Psychological support
 - GBS Support groups
Myasthenia Gravis

- Unknown Autoimmune disease forming antibodies to the acetylcholine receptor
- Young women and older men
- 10% thymoma
- Genetic disposition HLA A1, DRW3, B12
- Ocular and appendicular forms

Classification/Diagnosis

- MG Foundation I-V
 - I Ocular, V – Intubated
- Diagnosis
 - >85% ACh antibodies, muscle specific tyrosine kinase antibodies
 - Progressive weakness
 - Decremental EMG pattern, Single fiber jitter
 - Thymoma
 - Edrophonium or neostigmine test
 - Bulbar dysfunction admit to ICU

Causes of Myasthenic Crisis (n=63)

<table>
<thead>
<tr>
<th>Cause</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myasthenic weakness alone</td>
<td>32</td>
</tr>
<tr>
<td>Respiratory infection</td>
<td>27</td>
</tr>
<tr>
<td>Post thymectomy</td>
<td>17</td>
</tr>
<tr>
<td>No specific therapy</td>
<td>12</td>
</tr>
<tr>
<td>Start of prednisolone therapy</td>
<td>5</td>
</tr>
<tr>
<td>Overdose of cholinergic drugs</td>
<td>3</td>
</tr>
<tr>
<td>Under dose of cholinergic drugs</td>
<td>2</td>
</tr>
<tr>
<td>Emotional stress</td>
<td>2</td>
</tr>
</tbody>
</table>
Pharmaceutical Agents with the Potential to Aggravate Myasthenia Gravis

- **Antibiotics**
 - Clindamycin
 - Colistin
 - Kanamycin
 - Neomycin
 - Streptomycin
 - Tobramycin
 - Tetracycline's
 - Gentamicin
 - Polymyxin B
 - Bacitracin
 - Trimethoprim-sulfamethoxazole

- **Hormones**
 - ACTH
 - Corticosteroids
 - Thyroid hormone
 - Oral contraceptives

- **CV agents**
 - Quinidine
 - Propranolol
 - Procainamide
 - Pranidol
 - Lidocaine
 - Verapamil
 - Nitroglycerin
 - Diltaizem

- **Psychotropic agents**
 - Chlorpromazine
 - Promazine
 - Phenazine
 - Lithium
 - Diazepam

- **Miscellaneous**
 - Penicillamine
 - Chlorpromazine
 - Succinylcholine chloride
 - Catecholamines
 - Benzodiazepines
 - Phentoin
 - Trimethadione
 - Carbamazepine
Initial Management in Patients with Myasthenic Crisis

- Specific treatment
 - Stop pyridostigmine during mechanical ventilation
 - 5 plasma exchanges (2 consecutive days followed by exchanges on alternate days)
 - 5 days of IVIG, 0.4 g/kg
 - Corticosteroids (60 mg/day) if no improvement after 5 days of plasma exchange
 - In refractory cases, cyclosporine (5 mg/kg/day in 2 divided doses) or mycophenolate mofetil (2 g in 2 divided doses)

OUTCOME

- Median ICU stay 11-14 days
- Complications respiratory infections
- Mortality less than 5%
- Cardiac arrhythmias common
- Pulmonary emboli common
- May be able to use BiPAP in some situations

Conclusions

- Healthy ‘RESPECT’ for NM disease
- Intubate early based on PFT’s
- Differentiation is important for longer term care
 - EMG, NCS limits, rep stimulation and single fiber evaluations are useful