Objectives

• To review common CTA findings of acute aortic syndromes

• To review unusual manifestations and complications of these conditions

• To discuss important imaging findings that need to be urgently communicated to the surgeon/IR radiologist

Acute Aortic Syndromes

• Medical emergency

• Present with acute chest pain

• Characterized by high risk of aortic rupture and sudden death

Acute Aortic Syndromes

• Aortic dissection

• Intramural hematoma (IMH)

• Penetrating atherosclerotic ulcer

Acute Aortic Syndromes

• Causal relationship is proposed linking ulceration, IMH and aortic dissection

• Some patients exhibit some/all the above or may progress from one to the other – demonstrating a link
Imaging Options
- CXR
- Aortography
- TEE – hemodynamically unstable
- CTA – hemodynamically stable
- MRA – hemodynamically stable

CTA
- First line imaging test
- Readily available
- Rapid specific diagnosis of aortic pathology
 - Sensitivity: 100%
 - Specificity: 100%

Technique:
Non-Contrast

Remy-Jardin et al, Radiology 2007; 245:315-329

High attenuation Acute IMH

Technique:
Contrast Enhanced CT Angiography

Remy-Jardin et al, Radiology 2007; 245:315-329
CTA

- 70-120 ml Isovue 370
- Rate – 4-5 mL/sec
- Timing bolus or triggered delay
- Slice thickness: 1.25 mm
- Recon: 0.625/1.25
- Pitch: 1.375:1
- ECG-gating

MDCT Technique – MPR/3D

- Useful for communicating findings to surgeons/clinicians
- May be useful at branch points for deciding endovascular or surgical approach

Acute Aortic Syndromes

- Aortic dissection
- Intramural hematoma (IMH)
- Penetrating atherosclerotic ulcer
Acute Aortic Syndromes

- Aortic dissection
- Intramural hematoma (IMH)
- Penetrating atherosclerotic ulcer

Aortic Dissection

- Most common thoracic aortic emergency
- Males>Females
- Ascending aortic dissection:
 - Untreated: Mortality
 - 36-72% - 48 hours
 - 62-91% - 1 month
 - Treated: 75% 5-year survival

Aortic Dissection – Risk Factors

- Hypertension
- Aging
- Genetic
- Predisposing weakness of aortic wall
 - Cystic medial necrosis
- Pregnancy
- Bicuspid Aortic Valve
- Aortic surgery/catheterization
- Coarctation
- Loetz Dietz Syndrome

Aortic Dissection – Presentation

- Classic: Acute severe substernal tearing pain radiating to back (>70%)
- Aortic insufficiency
- Asymmetric pulses – upper limbs
- Absent femoral pulses (25%)

Atypical Presentation

- No chest pain – 15-20%
- Symptoms from branch vessel involvement
 - Chest pain and SOB - MI and CHF
 - Abdominal pain - Mesenteric ischemia
 - Stroke, confusion, coma, syncope

Aortic Dissection – Mechanism

- Tear in aortic intima
- Longitudinal split in media
- Creation of false channel in media
- Acute dissection is considered chronic at 2 weeks
Typical Appearance

- Typical double barreled dissection
- >75% of cases
- 2 or > opacified lumens
- Smooth spiraling flap
- ± differential enhancement of lumens
- Discontinuities in flap: intimal tears

Atypical Appearance

- Intramural hematoma
- Noncommunicating lumens
- Nonopacified crescentic or circumferential false lumen
- Non contrast images: high attenuation crescent or circumferential false lumen
- Displaced intimal calcification

Acute Intramural Hematoma – Noncontrast Images

CT Review

- Determine extent (Type A vs. B)
- Identify:
 - True and false lumens
 - “Entry” and “reentry” tears
 - Source of perfusion of major branches
 - True
 - False
 - Both/indeterminate
 - Complications
Aortic Dissections

- Classic AD begin at 3 distinct sites
 - Aortic root
 - 2 cm above aortic root
 - Just distal to the left subclavian takeoff

Dissection - Classification

DeBakey
- Type I: tear in ascending aorta, flap in ascending and descending aorta
- Type II: tear in ascending, flap in ascending aorta
- Type III: tear in descending, flap in descending aorta

Stanford
- Type A: flap in ascending aorta
- Type B: flap not in ascending aorta

Stanford Type A
- Surgical Emergency
- May result in death from
 - Wall rupture
 - Hemopericardium and tamponade
 - Occlusion of coronary ostia with MI
 - Severe aortic insufficiency

Common Adventitia with PA
Identify Lumens – True vs. False

False Lumen
- Beak sign
- Lumen size – Usually larger
- Differential flow
- Intraluminal thrombus
- Outer wall calcification
- Cobwebs

LePage MA et al, AJR 2001; 177:207

Differential Flow

True lumen central and small

False lumen

Beak Sign
Cobwebs

LePage MA et al, AJR 2001; 177:207

What happens to the false lumen?
- Thromboses
- Decreases in size over time
- Increases in size over time – aneurysmal
- Ruptures

Perfusion of major branches
- Arch
- Celiac
- SMA
- Renals
- IMA
Perfusion of major branches

- Arch vessels – innominate, left common carotid and left subclavian

Perfusion of major branches

- Celiac
- SMA
- IMA

Perfusion of major branches

- Right renal
- Left Renal
- Iliacs

Dissection – Acute Complications

- Branch vessel compromise – static or dynamic
- Mortality significantly increases with end organ ischemia
 - Brain
 - Heart
 - Bowel
 - Kidney
 - Spinal Cord

Static and Dynamic Obstruction

Williams DM et al; Radiology 1997; 203:37-44
Circumferential tear with Intimo-intimal Intussusception

Emergent Surgical Correction
- Stanford Type A
- Complicated Type B
 - Increasing aortic diameter/hematoma
 - Branch vessel compromise
 - Impending rupture
 - Persistent pain despite adequate analgesia
 - Bleeding into pleural cavity
 - Development of saccular aneurysm

Acute Aortic Syndromes
- Aortic dissection
- Intramural hematoma (IMH)
- Penetrating atherosclerotic ulcer

Intramural Hematoma (IMH)
- Spontaneous hematoma into aortic media from vasa vasorum infarction
- Variant of dissection
- Classic dissection – intimal flap present
- IMH – intimal flap absent
 - Absence of reentrance tear from media into lumen leads to development of IMH
- Elderly

IMH – Imaging Findings
- Relatively circumferential
- High attenuation on NC images
- High attenuation masked on CE images
- No entrance tear
- No direct communication between IHM and the aortic lumen
- No flow in hematoma

Acute Intramural Hematoma
Aortic Branch Artery Pseudoaneurysms
- Isolated pockets of contrast
- Sometimes seen in thrombosed FL
- Intercostal artery origin
- Dissection has sheared off arteries at their origins

Intramural Blood Pools – Branch Artery Pseudoaneurysms

IMH Findings asso with ↑ Mortality
- Stanford Type A
- Mural thickness >10 mm
- Aortic diameter >5 cm
- Presence of penetrating ulcer
- Rebleeding on serial imaging
- Extension of thrombus on serial imaging

Acute Aortic Syndromes
- Aortic dissection
- Intramural hematoma (IMH)
- Penetrating atherosclerotic ulcer

Penetrating Atherosclerotic Ulcer
- Focal irregular outpouching of contrast from atherosclerotic plaque eroding the internal elastic lamina and penetrating the media
- Often in presence of extensive atheroma
- Location – descending thoracic aorta
Acute Aortic Syndromes

- Aortic dissection
- Intramural hematoma (IMH)
- Penetrating atherosclerotic ulcer
- Aneurysm rupture

Aortic Rupture

- Periaortic hematoma or contained rupture is more common with IMH than classic AD (IRAD Registry)

Aortic Rupture – CT Findings

- Hyperdense thickening of aortic wall (blood collects between partially disrupted aortic wall layers)
- Mediastinal hematoma
- Hemorrhagic pleural effusion
- Hemo-pericardium (less common)
- Impending hypovolemic shock:
 - Decrease in calibre of central vessels or excessive enhancement of aorta relative to injection

Contained Aortic Rupture

Acute Aortic Syndromes

- Cannot be distinguished from each other clinically

- Imaging is crucial for:
 - Determining the type of AAS
 - Identifying the location
 - Determining the extent of the pathology
 - Identifying anatomic complications

Take Home Points

Recognize and urgently communicate findings of AAS that may require emergent surgery/intervention:
References

Thank You

Smita Patel, M.B.B.S., M.R.C.P., F.R.C.R
Professor, University of Michigan
Ann Arbor, MI