Interstitial Lung Disease

Smita Patel, M.B.B.S., M.R.C.P., F.R.C.R.
Professor, University of Michigan, Ann Arbor, MI

Disclosure

• I have no relevant commercial relationships to disclose.

Objectives

• To review basic HRCT Patterns and the distribution of these patterns
• To develop an approach to differential diagnosis based on HRCT patterns and distribution of abnormalities for the evaluation of interstitial lung disease

Technique

• Thin collimation (1 mm)
• Inspiration (volumetric)
• Expiration (incremental q 2 cm)
• Prone (1-2 cm, lower chest)
• High-spatial frequency reconstruction algorithm

Small Airways Disease

Inspiratory vs. Expiratory Imaging

Inspiratory

Expiratory
Tracheomalacia

Inspiratory Expiratory

HRCT Patterns

- Reticular Abnormality
- Nodules
- Tree-in Bud
- Ground Glass attenuation
- Mosaic attenuation

Reticular Abnormality

- Inter and intralobular septal thickening
- Traction bronchiectasis
- Honeycombing

- Associated findings
 - peribronchial interstitial thickening
 - thickening of fissures
 - prominence of centrilobular arteries

Interlobular Septal Thickening

Smooth
- Interstitial infiltration
- no distortion

Nodular
- perilymphatic distribution
- Pulmonary edema
- Lymphangitis
- NSIP
- Amyloid (rare)
- Sarcoildosis
- Lymphangitis
- NSIP
- Chronic HP
- Sarcoidosis
- Asbestosis
- Drugs

Irregular
- Lung distortion strongly suggestive of FIBROSIS
Interlobular Septal Thickening

- Distribution
 - Central vs. Peripheral

- Predominant in:
 - Upper lobes
 - Along bronchovascular bundles?
 - Lower lobes

Interlobular Septal Thickening - Smooth

Pulmonary Edema

Interlobular Septal Thickening - Nodular

Lymphangitis

Inter and intralobular Septal Thickening - Irregular

Traction Bronchiectasis

- Bronchi -
 - irregular/corkscrew dilatation of small peripheral bronchioles
 - mucous plugging absent

- associated with reticular pattern or lung distortion (occasionally honeycombing)

- D/D
 - NSIP/UIP - IPF
 - Collagen Vascular disease
 - Sarcoidosis
 - Chronic Hypersensitivity pneumonitis
NSIP
- ground-glass attenuation
- fine reticulation
- traction bronchiectasis
- peripheral predominance
- basal predominance
- NO honeycombing
- Better prognosis than UIP

Chronic HP

Sarcoidosis

Drug Toxicity - Gemcytobine

Honeycombing
- Extensive pulmonary fibrosis, alveolar destruction, irreversible
 - thick-walled air filled cysts (3mm-1cm)
 - cysts share walls
 - several layers at pleural surface
 - secondary pulmonary lobules difficult to recognize
 - +/- traction bronchiectasis
- D/D
 - IPF - UIP / Collagen Vascular Disease
 - Drugs
 - Chronic hypersensitivity pneumonitis
 - End stage sarcoidosis
 - Asbestosis
IIP Prognosis: UIP & NSIP
Flaherty et al. Thorax 2003:58:143-8

HRCT accuracy
• 27/27 (100%) def/prob UIP on HRCT had UIP histologically
• 18/44 (41%) with def/prob NSIP on HRCT had NSIP histologically

Nodules - Distribution
Nodules - Anatomic Distribution (Colby)
• lymphatic
• random
• bronchiolocentric
• angiocentric

HRCT
• Perilymphatic
• Random
• Centrilobular

Perilymphatic nodules

Perilymphatic Nodules
• Perilymphatic nodules
 – sarcoidosis
 – lymphangitic tumor
 – silicosis or coal workers pneumoconiosis
 – Lymphocytic interstitial pneumonia (LIP)*
 – amyloidosis*

• Bronchoscopy - diagnostic
• Clinical history may obviate Bx

Perilymphatic nodules

Lymphangitic Spread of Tumor
Random Nodules
- Random distribution relative to structures of secondary pulmonary lobule
- Diffuse and uniform, well-defined
- Subpleural nodules often seen
- Bronchoscopy - often diagnostic

Differential Diagnosis
- Miliary TB
- Hematogenous metastases
- Fungal Infection
- Sarcoid (rare)
- BACC

Centrilobular Nodules
- Bronchiolar/peribronchiolar abnormality in relation to centrilobular bronchiole/artery
 - Centered 5-10 mm from pleura
 - Ill-defined
 - Evenly spaced
 - Diffuse/patchy
- Centrilobular nodules - predominant finding (small airways disease – HP)
- Trans bronchial Bx/BAL - diagnostic

Hypersensitivity Pneumonitis

Respiratory Bronchiolitis
- Poorly defined centrilobular nodules
- GGO
- UL > LL
- Smokers!
Tree-in-bud

- centered 5-10 mm from pleural surface
- airway disease - impaction of small CL bronchi
- Diagnosis
 - sputum culture
 - BAL
- Almost always - infection
- **Differential Diagnosis**
 - Infection
 - TB
 - MAC
 - Fungus
 - Bacteria
 - Airways Disease
 - CF
 - Bronchiectasis
 - Endobronchial spread of tumor (rare)

Ground-glass attenuation

- Hazy increase in lung attenuation, not associated with vascular obscuration
- Abnormality below resolution of CT
- Minimal interstitial thickening or minimal airspace filling
- GGO non-specific, but important
 - active infl process - potentially reversible
 - fibrosis - potentially irreversible

Desquamative Interstitial Pneumonitis

- Rare
- 90-95% cigarette smokers
- ground glass opacity
- +/- mild septal lines
- subpleural 60%; diffuse 40%
- no lower lobe predominance
Crazy Paving

- Ground-glass attenuation and septal thickening
- Differential Diagnosis
 - Alveolar proteinosis (subacute symptoms)
 - Pneumocystis or viral pneumonia
 - Edema
 - Hemorrhage
 - ARDS

Mosaic Attenuation

Mosaic Attenuation/Perfusion

- Patchy areas of decreased lung attenuation
 - abnormal bronchi in lucent lung regions
 - vessels small in lucent regions
 - vessels and bronchi normal in relatively high attenuation regions, or greater in size and number

Mosaic Attenuation/Perfusion

- Airways disease
 - B.O.
 - Bronchiectasis
 - HP
 - Air trapping on expiration

- Pulmonary Vascular Disease
 - Chronic PTE
 - Enlarged main pulmonary A
Inspiratory Expiratory

Mosaic Attenuation
• Pulmonary vascular disease (Chronic PE)

High Resolution CT Diagnosis
• Pattern of abnormality
• Distribution of disease
 – Unilateral vs. bilateral
 – Upper vs. lower lobe predominance
 – Peripheral vs. central
• Associated findings
• Clinical history
• Prior probability

Summary
• Recognize High resolution computed tomography (HRCT) patterns of diffuse lung disease.
• Generate a differential diagnosis based on the HRCT pattern and distribution of findings.

Acknowledgements
Dr. Ella Kazerooni
Dr. Barry Gross
Dr. Sanjeev Bhalla

Thank You!