The Future of HDL Diagnostics
and Therapeutics

Sergio Fazio, MD, PhD
William and Sonja Connor Professor of Preventive Cardiology
Professor of Medicine, Physiology & Pharmacology
Director, Center for Preventive Cardiology
Knight Cardiovascular Institute
Oregon Health and Science University
Portland, Oregon

Disclosures:
Advisory work with Merck, Kowa, Amarin, Sanofi, Aegerion, Invitae, Amgen

Low Levels of HDL-C Strongly Associate
with Risk of Coronary Artery Disease

TNT Study: Low HDL-C predicts CVD Risk in High-risk Subjects with LDL-C at Goal

Patients with on treatment LDL-C ≤ 70 mg/dL

<table>
<thead>
<tr>
<th>HDL-C Quintiles mg/dL</th>
<th>5-Year Risk of Major CVD Events, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 <37</td>
<td>4.2</td>
</tr>
<tr>
<td>Q2 37 to <42</td>
<td>3.7</td>
</tr>
<tr>
<td>Q3 42 to <47</td>
<td>3.0</td>
</tr>
<tr>
<td>Q4 47 to <55</td>
<td>2.5</td>
</tr>
<tr>
<td>Q5 ≥55</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Hazard Ratio Versus Q1:
- Q2: 0.85
- Q3: 0.57
- Q4: 0.55
- Q5: 0.61

Macrophages and Inflammation in the Artery Wall

Moore & Tabas, Cell 2011
Recent Issues in HDL Biology

In Humans:
- Gene Association Studies
 - Mendelian Randomization
 - SNPs
- Mutations
 - ApoAI
 - ABCA1
 - Endothelial Lipase
 - SCARB1
- Changes in HDL-C not associated with altered CAD risk
 - IDEAL and EPIC (Norfolk) studies
 - High HDL-C not lowered CAD risk.
- HDL-C Elevating Therapies
 - Niacin (AIM-HIGH)
 - No clear clinical benefit
 - CETP inhibition
 - No clear clinical benefit
- Recombinant HDL infusion
 - No clear benefits on plaque size

Conclusion: Changes in HDL-C ≠ Change in CAD

In Rodents:
- SR-B1 overexpression
 - Low HDL-C, reduced Athero
- SR-B1−/−
 - High HDL-C, increased Athero
- LCAT−/−
 - Low HDL-C, reduced Athero
- ABCA1−/−
 - Low HDL-C, Athero not affected

- Lifestyle modification
- Statin
- Niacin
- Fibrate
- Combination therapy

Current Options for Management of Low HDL Cholesterol
AIM HIGH: No Measurable Effects of Niacin Added to Simvastatin

- 3414 Subjects with CAD
- Simvastatin alone or with ezetimibe ± ER niacin
- On niacin TG 120, HDL 44, LDL 65
- Controls TG 152, HDL 38, LDL 67
- 282 subjects on niacin had primary endpoint (16.4%)
- 274 controls had primary endpoint (16.2%)
- Niacin does not seem to be affecting residual risk

NEJM November 2011
Reduced Risk of CV Events in ACCORD Lipid

Novel Therapies to Raise HDL-C or Improve HDL Function

- CETP inhibitors
- LXR agonists
- ABCA1 activators
- ApoAI mimetics
- ApoAI injectables
- SR-BI Inhibitors
- LCAT activators

CETP Inhibitors and Modulators
Lipid Effects of CETP Inhibitors/Modulators

<table>
<thead>
<tr>
<th>CETP Agent</th>
<th>Dose (Mg/day)</th>
<th>HDL-C (%)</th>
<th>LDL-C (%)</th>
<th>TG (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torcetrapib</td>
<td>60</td>
<td>61</td>
<td>-24</td>
<td>-9</td>
</tr>
<tr>
<td>Anacetrapib</td>
<td>100</td>
<td>138</td>
<td>-40</td>
<td>-7</td>
</tr>
<tr>
<td>Evacetrapib</td>
<td>500</td>
<td>129</td>
<td>-36</td>
<td>-11</td>
</tr>
<tr>
<td>Dalcetrapib</td>
<td>600</td>
<td>31</td>
<td>-2</td>
<td>-3</td>
</tr>
</tbody>
</table>

ILLUMINATE

Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events

15,067 patients
- Men and women
- Aged 45-75 years
- 250 sites in 7 countries
- CHD or risk equivalent, any HDL-C level, statin eligible

Primary End Point
Composite of fatal CHD, nonfatal MI, stroke (fatal and non-fatal and unstable angina requiring hospitalization)

Torcetrapib: Increased Cardiovascular and Non-Cardiovascular Morbidity and Mortality

Patient Survival Curve

Was the toxicity of torcetrapib related to off-target effects specific to this molecule?

Dalceptrapib Phase IIb Trial

HDL-C Increase at Week 12

![Graph showing change in HDL-C levels at Week 12](image)

NOTE: Dalceptrapib 600 mg is the dose used in phase III

- Placebo: n = 73
- Dalceptrapib 300 mg: n = 75
- Dalceptrapib 600 mg: n = 67
- Dalceptrapib 900 mg: n = 72

P < 0.0001 vs placebo

Dal-OUTCOMES:

- No toxicity but no ↓CVD

- Placebo: n = 73
- Dalceptrapib: n = 75

Evacetrapib:

Effects on HDL-C and LDL-C

![Graph showing effects on HDL-C and LDL-C](image)

P<0.001 compared with placebo.

CETP Inhibition with Anacetrapib

LDL-C
- Anacetrapib: 39.8% (P<0.001)
- Placebo

HDL-C
- Anacetrapib: +138.1% (P<0.001)
- Placebo

REVEAL Trial

Randomized Evaluation of the Effects of Anacetrapib through Lipid-Modification

- Anacetrapib 100 mg
- Placebo

Primary End Point
- Coronary death, myocardial infarction or coronary revascularization

Sites in North America, Europe and Asia

30,000 patients aged ≥ 55 with occlusive arterial disease

Planned completion in 2017

- 4 year follow-up

Does HDL become dysfunctional in CAD or does dysfunctional HDL cause CAD?

- Lack of association between function and HDLc levels suggests that atherosclerosis may modify HDL
- Dysfunctional HDL may be hiding in either the low or high HDLc range
- Dysfunctional HDL may be present in unique patient types

CAD* Risk Reduction with LDL Lowering in ESRD Patients

<table>
<thead>
<tr>
<th>Study</th>
<th>Statin</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>4D (atorva)</td>
<td>33 (1.91%)</td>
<td>35 (2.02%)</td>
</tr>
<tr>
<td>AURORA (rosuva)</td>
<td>91 (1.97%)</td>
<td>107 (2.33%)</td>
</tr>
<tr>
<td>SHARP (simva/eze)</td>
<td>134 (0.71%)</td>
<td>159 (0.85%)</td>
</tr>
</tbody>
</table>

*Non-fatal myocardial infarction

Uremia Inhibits Atherosclerosis Regression

HDL of Patients on Renal Dialysis Have Impaired Cholesterol Efflux Capacity

New Generation of HDL Metrics

HDL Biogenesis

Genetics

Macrophage Sterol Exchange
Macrophage Sterol Efflux

Modified from Duffy and Rader, Nature Reviews, 2009

Serum Cholesterol Efflux Capacity

Cholesterol Efflux Capacity in Coronary Artery Disease Patients

- 442 CAD patients and 351 controls
- Serum efflux capacity independent predictor of coronary artery disease status
- Results only partially explained by HDLc levels
- Efflux improved by pioglitazone, not by statins

Sterol Efflux Capacity of Serum HDL Strongly Associates with Prevalent CAD Status

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Odds Ratio (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>1.50 (1.26–1.80)</td>
<td><.001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.80 (1.31–2.47)</td>
<td><.001</td>
</tr>
<tr>
<td>Smoking</td>
<td>1.30 (0.95–1.73)</td>
<td>.10</td>
</tr>
<tr>
<td>LDL cholesterol</td>
<td>1.81 (0.80–3.59)</td>
<td>.19</td>
</tr>
<tr>
<td>HDL cholesterol</td>
<td>0.80 (0.60–1.08)</td>
<td>.09</td>
</tr>
<tr>
<td>Efflux capacity</td>
<td>0.71 (0.51–0.98)</td>
<td>.03</td>
</tr>
</tbody>
</table>

HDL Prevents Polymerization of von Willebrand Factor

Conclusions and Take Home Messages

- HDL-C levels predict CVD risk, but HDL-C manipulation is not linked to clinical benefits.
- Functionality of HDL may relate to CVD risk reduction.
- Many HDL functions can be studied, but the one ahead is the ability to extract cholesterol from cells.
- There may be a correlation between HDL-C levels and HDL functionality, but this can easily be lost in conditions such as renal disease or systemic inflammation.
- No therapy is available to improve HDL function.