CRYPTOGENIC STROKE

Victor Barredo, M.D.
Neurologist
Baptist and South Miami Hospitals

Disclosures
I have no relevant commercial relationships to disclose.

Stroke Etiologies

<table>
<thead>
<tr>
<th>Hemorrhagic Vessel Rupture (15%)</th>
<th>Ischemic Artery Occlusion (85%)</th>
</tr>
</thead>
</table>

Breakdown of Ischemic Strokes:
- Atherothrombotic (25-30%)
 Stenotic artery feeding area of infarction
- Cardioembolic (20%)
 A thrombus or other material dislodges from the heart or aortic arch
- Lacunar/Small Vessel (15-20%)
 Small, deep infarct
- Other/Uncommon (5-10%)
- Cryptogenic (25-40%)
 Unknown cause

Small vessel strokes
- Generally due to metabolic disease
 - Hypertension
 - Hyperlipidemia
 - Diabetes
 - Smoking
- Not due to embolic disease
 - The arteries are microscopic, and too small to hold an embolus
- Workup and treatment generally consists of
 - Carotid dopplers
 - Lipids
 - Glucose monitoring
 - Blood pressure control
 - Antiplatelet agents

Adapted from HP Jr, Stroke. Jan 1993; 24; 35-41
Data from NINCDS Stroke Data Bank / Adams Jr. St. Stroke. 1988; 20; 287
Thalamic Lacunar stroke

Embolic Strokes
- Strokes often line up at the watershed distribution or at the cortex
- May be a small shower representing a lysed clot
- May be in one or multiple vascular territories
 - Multiple vascular territories is pathognomonic for emboli or vasculitis
- Infarcts tend to be larger, with more severe symptoms and deficits
 - Aphasia
 - Neglect
 - Field cuts
 - Seizures
- Can cause edema and death

Watershed Distributions
Embolic stroke

Why MRI Matters

- Delayed diagnosis
- Missed diagnosis
- Increased risk from alternative imaging modalities

Patient presents with mild left sided weakness

- Examination shows no cortical signs, only slight left sided weakness.
- Most consistent with lacunar syndrome.
- CT at left is normal.
- MRI at right shows embolic, cortical infarct.
Embolic Stroke Workup

- Carotid Dopplers to rule out artery to artery embolus
- Fasting Lipids
- Blood Sugar
- MRA or CTA of intracranial vessels to rule out stenosis
 - The SAMPRIS trial shows that intracranial angioplasty does not reduce the risk of recurrent stroke
 - Medical management
 - Does give a culprit
- Transesophageal Echocardiogram
 - Rule out thrombus in the left atrial appendage
 - Cannot be seen on 2D surface echo
 - PFO is of no clinical importance most of the time given CLOSURE study.

Cardioembolic Stroke Causes

- Atrial Fibrillation/Flutter
- Low EF
- Cardiac Thrombus or “Smoke”
- Rare Causes:
 - Cardiac Tumor
 - Vegetation on valve
 - Mobile aortic arch atheroma (>3mm)
 - Endocarditis
 - PFO with venous source of embolism

The dilemma of Cryptogenic Stroke

- If all tests are negative (and the patient has no history of Atrial Fibrillation) we now have a cryptogenic stroke
- The patient is at high risk for a recurrent stroke, and hence further disability and death
- The stroke obviously looks embolic in nature, but how to prove it?
 - Paroxysmal atrial fibrillation may only be present for a few minutes a month, but that is enough to cause a devastating stroke.
Cryptogenic Stroke

Why AF Matters

- AF equals 5 fold increase for stroke risk
- Up to 90% of Paroxysmal Atrial Fibrillation (PAF) episodes may be asymptomatic.
- Risk of stroke annually is equal for PAF and permanent AF
- Detection of AF in Cryptogenic Stroke Patients changes treatment
 - Guidelines state change from antiplatelet to OAC

Importance of AF and Stroke

- AF is frequently paroxysmal and asymptomatic, making detection of AF difficult
- 25% of those with AF-associated stroke have no known prior history of AF
- Even in stroke patients with known PAF, 50-70% are in sinus rhythm at time of stroke
- AF is one of the only reasons to use anticoagulation for secondary stroke prevention
 - For almost all other reasons antiplatelet agents are used
 - Anticoagulants have significantly high risk associated with use.

TRENDS Study Subgroup Analysis

Newly Detected AF "NDAF" in Patients with Thromboembolic Events

- 163 patients with previous ischemic stroke/TIA, no known AF, were continuous monitored via pacemaker or ICD
- NDAF > 5 minute duration were found in 28% patients.
- 73% of patients had newly detected AT/AF on <10% of follow-up days
Post Stroke – Was It Caused by AF?

- AT/AF burden >5.5 hours on any of 30 prior days appeared to double thromboembolic (TE) risk.
- "35% of all strokes and systemic emboli were preceded by device detected atrial tachyarrhythmia’s.”

<table>
<thead>
<tr>
<th>AT/AF Burden Status</th>
<th>Annualized TE Rate (95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low AT/AF burden</td>
<td>1.1 (0.9, 1.4) %</td>
</tr>
<tr>
<td>High AT/AF burden</td>
<td>2.4 (1.2, 4.5) %</td>
</tr>
</tbody>
</table>

2. http://m.theheart.org/article/115346

Clinical Impact of NDAF in Stroke Patients

- Risk of stroke recurrence is 4 times greater among prior stroke patients with NDAF (15.5%) compared to those with either known AF or no AF (3.9%).
- Emphasizes the need for timely detection of AF.

Ziegler Paper

Topic: Intermittent and symptom-based monitoring

- Data from 574 AT500 IPG patients were analyzed retrospectively over 1 year, with intermittent monitoring simulated by analyzing data from randomly selected days.
- "Intermittent and symptom-based monitoring is highly inaccurate for identifying patients with any or long-duration AT/AF and for assessing AT/AF burden."

Example: Quarterly Holter recording detects AF in 54% of the patients with AF, and is correct 29% of the time in ruling out AF in patients.

Baptist Health South Florida

Combining Medical Education
How AF is Detected in Cryptogenic Stroke Patients
The more you look, the more AF you find

- N = 145
- Acute stroke or TIA and no history of AF
- 24-hour Holter recording if normal ECG
- 7-day event monitor if normal Holter

Incremental % AF Detection

SURPRISE Study
Updated Results

Methods:
- 85 patients with cryptogenic stroke/TIA and no AF on 24-hour telemetry were implanted with Reveal XT
- All patients had a minimum of 6 months of monitoring

Results:
- 14 of 85 (16.5%) of patients diagnosed with AF
 - Median time from stroke onset to first recorded event - 98 days
 - Average AF burden was 2 hours per day monitored
 - CHADS2-Vasc in AF group was 4.14 vs. 3.24 in no AF (p=0.03)

Incidence of Atrial Fibrillation detected by Implantable Loop Recorders in Unexplained Stroke

Methods:
- 65 patients with cryptogenic stroke implanted
- Patient workup included vascular & cardiac imaging, at least 24 hours of cardiac rhythm monitoring

Results:
- AF was identified in 25.5% (13) patients
 - Median time to AF detection after implant was 48 days
 - Median duration of first detected AF episode was 6 minutes
 - AF was associated with increasing age (p = 0.018), interarterial conduction block (p = 0.02), left atrial volume (p = 0.02) and the occurrence of atrial premature contractions on preceding external monitoring (p = 0.03)
 - Clinical action (OAC) was taken on all patients where AF was detected

Cotter et al, Neurology, 2013; 80 (14)
Occult Atrial Fibrillation in Cryptogenic Stroke
Detection by 7-day ECG vs. ICM

Methods:
- 60 patients with cryptogenic stroke implanted
- Compared ICM to 7-day Holter monitor
- Patient workup included Cerebral imagining, ECG, 72 hour telemetry, 24-hour Holter, TEE

Results:
- AF was identified in 17% (10) patients
- Average time to detection 64 days post-stroke
- Yield of ICM (17%) vs. 7-day ECG (1.7%) significantly higher p=0.0077

Insertable Cardiac Event Recorder in Detection of Atrial Fibrillation After Cryptogenic Stroke: An Audit Report
Etgen et al., 2013

Methods
- Patient work-up included MRI, 12-lead ECG, 24-72 hr. bedside telemetry, 24-hr Holter, TEE, computed tomography/MRI angiography
- 22 patients with cryptogenic stroke and eligible for oral anticoagulation were implanted with Reveal XT
- AF defined as episode ≥6 minutes

Results
- AF detected in 27.3% (6) patients
- Average time to detection post-stroke was 161 days

Patient Pathway for Acute Stroke
Reimbursement
Cryptogenic Stroke – Appropriate Diagnosis Coding

- "Cryptogenic stroke" usually refers to strokes with no clearly definable cause even after extensive workup.
- Although atrial fibrillation (AF) may be suspected in these patients, it can’t be assigned as a diagnosis code until the diagnosis is established.
- Diagnosis coding for cardiac monitoring insertion depends on the circumstances:
 - Inpatient (during the same admission as the acute stroke)
 - The acute stroke is the principal diagnosis code
 - Outpatient (after discharge from the acute stroke admission)
 - If a specific symptom or sign is present that necessitated the device insertion/test/procedure, that should be used as the principal diagnosis code; however, these patients are usually asymptomatic
 - If the patient has residuals from the stroke, a code from category 438.XX (late effects of cerebrovascular disease) is appropriate as the principal diagnosis code
 - If the patient has no residuals from the stroke, code V12.54 (personal history of stroke or TIA w/o residual deficits) is appropriate as the principal diagnosis code
 - Code V12.54 can also be used as secondary diagnosis codes if a specific symptom or sign is coded as the principal diagnosis

ICMs are Underutilized

- ICMs are recommended by clinical guidelines; yet significantly underutilized

Up to 3 in 4 patients who met appropriate criteria for ICM implantation did not receive one
Cardiac Diagnostics Landscape

24-Hour Holter: 2.5 Million
Event Recorder: 1.5 Million
14-30 Day "MCOT": 250,000
Insertable Cardiac Monitor: 25,000

Source: Frost & Sullivan report: North American Cardiac Monitoring and Diagnostic Services Markets

Symptoms and Intermittent Monitoring
The Tip of the AF Iceberg

Conclusion

- Embolic strokes have a specific appearance on a diagnostic MRI
- With no known hx of AF, the workup is usually negative, leaving us with a diagnosis of cryptogenic stroke
- The yield of diagnosing AF in these patients can be quite high if proper protocol is followed
- An enthusiastic and cooperative partnership between a neurologist and cardiologist is imperative
Thank you