Objeclves

• Review genetic testing criteria for Breast cancer.
• Discuss single gene vs. multi-gene panel approaches.
• Discuss Variants of Uncertain Significance (VUS)
• Recognize the importance of taking a thorough family history.
• Review new information regarding cancer risks in BRCA carriers.

Fags for Hereditary Breast Cancer

• Early-onset breast cancer diagnosis (≤ 50)
• Bilateral presentation or multiple primary cancers
• Male breast cancer
• Families with 3 or more cases of breast cancer over 2 or more generations
• Triple negative histopathology (≤ 60)
• Ashkenazi Jewish ancestry
• A history of breast and ovarian cancer in the same individual
• Specific associations of different primary cancers in the same side of the family
 • Breast, ovarian, prostate, pancreatic
 • Breast, endometrial, thyroid
 • Lobular breast, and stomach

Arels Marti-Negron, MD FACP
Division of Clinical Genetics
Center for Genomic Medicine

John M. Cassel Memorial Breast Cancer Symposium 2017
Hereditary Breast Cancer Syndromes Update

Disclosures

• No commercial relationship relevant to this presentation
The case for multigene panels

Changing Landscape of Genetic Testing

- Cancer genetic testing is currently offered by >30 laboratories in the United States
- Genetic testing options consist of:
 - Syndrome-driven testing
 - Multi-gene panels
- Indications for multi-gene panels:
 - Personal and/or family history is strongly suggestive of a hereditary component
 - Personal and/or family history could be explained by 2 or more hereditary cancer syndromes
- Multi-gene panels are rapidly gaining popularity in clinical practice

Multi-gene Panel Testing

Benefits
- Increased diagnostic yield
- Minimized testing fatigue
- Identification of unforeseen opportunities for prevention
- Cost effectiveness
 - Evidence-based research testing

Challenges
- Increased likelihood of identifying variants of unknown significance (VUS)
- Limited clinical utility for moderate-risk and newer genes
- Incidental results may be accompanied by anxiety
- Wide variation among testing laboratories
 - Techniques and interpretation

Breast Cancer and Multigene Germline Sequencing in ~2,700 Women with Breast Cancer

Figure 1. Distribution of pathogenic variants in women with breast cancer (n=2700)

- BRCA1 and BRCA2
- Other genes associated with breast cancer risk
- Lynch syndrome genes
- Other genealogical and germline sequences

10% of all BC patients had at least one germline mutation.

- BRCA1 (or 46%), BRCA2 (25%), non-BRCA1/2 (39%).
• 35 y/o female of AJ descent diagnosed with right DCIS Stage 0
• Evaluated in an Outside Hospital
• Genetic testing was offered by treating MD

Recommended testing in outside facility for DCIS

• 2014 - Multisite 3 Ashkenazi Jewish – Negative
• 2015 - Breast Cancer panel; BRCA1, BRCA2, PALB2, PTEN and TP53- Negative

Treatment: Right nipple sparing mastectomy
Tamoxifen, reportedly not offered

At age 37

• Patient had a uterine evaluation as part of the fertility evaluation
• Stage 4 uterine adenocarcinoma high grade with metastases bladder and mesentery
• S/P Total abdominal hysterectomy, BSO, partial bladder resection and lymph nodes dissection
Testing history

- 2017-34 gene panel;

<table>
<thead>
<tr>
<th>RESULTS</th>
<th>Pathogenic Mutation: c.3943delCAHG</th>
</tr>
</thead>
</table>

SUMMARY

POSITIVE: Pathogenic Mutation Detected

Treatment plan

- Chemotherapy: Carboplatin and Taxol with Neulasta
- Radiation oncology-evaluated but treatment not recommended at this time
- Colonoscopy pending—to be done after chemotherapy

Lynch Syndrome

- Approximately 3-5% of colorectal cancers (CRC) are due to Lynch Syndrome.
- Lynch Syndrome is caused by autosomal dominantly inherited mutations in the mismatch repair (MMR) genes MLH1, MSH2 (EPCAM*), MSH6 and PMS2 and EPCAM.
- Individuals with Lynch Syndrome have a substantial increased risk of developing colorectal cancer.

EPCAM deletions that disrupt the 3' end lead to inactivation of the adjacent MSH2 gene through methylation induction of its promoter.
Lynch Syndrome

Colon cancer:

Multigene Panel Testing Provides a New Perspective on Lynch Syndrome

Results
• Reviewed of 34,981 patients who had multigene panel testing from March 2012 and June 2015.
• 528 were found to carry a pathogenic variant in the mismatched repair (MMR) genes.
• 63 patient (11.9%) had breast cancer only
• 144 (27.3%) had colorectal cancer only
• For those with breast cancer only MSH6 and PMS2 were more frequent

Canadian study
• An increased risk of breast cancer in MSH2 mutation carriers was demonstrated in a Canadian familial cancer registry. Women with breast cancer often had a personal and family history of multiple LS-related malignancies. These results suggest a potential role for intensified breast cancer surveillance among women with LS (J Med Genetics, 2017)
• Prospective cohort study 1997-2011 female carriers;
 - BRCA1-6,036
 - BRCA2-3,820
 5,046 unaffected and 4,810 affected
 • From large national studies: UK, Netherlands and France

Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers

Risks BRCA1/2

<table>
<thead>
<tr>
<th></th>
<th>BRCA1</th>
<th>BRCA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime breast cancer risk to age 80</td>
<td>72%</td>
<td>69%</td>
</tr>
<tr>
<td>Incidence (per y)</td>
<td>30-40y</td>
<td>40-50y</td>
</tr>
<tr>
<td>Contralateral breast cancer (risk for 20y)</td>
<td>40% (2.5 per year)</td>
<td>26% (1.3% per year)</td>
</tr>
<tr>
<td>Ovarian Cancer risk</td>
<td>44%</td>
<td>17%</td>
</tr>
</tbody>
</table>

Direct to Consumer Genetic testing

Recently available recently for BRCA1 and BRCA2
$99 with genetic counseling
• Laboratory do not report variant of uncertain significance
 (~ 10% are reclassified as positive)
• Genetic counselor only if requested by consumer.
• This test is consider incomplete in 2017 given the availability of additional genes.
• Probability of false sense of security
• Genomic Health literacy is an issue —since this is order by non genetic providers

American College of Genetic and Genomics statement Direct-to-consumer genetic testing: a revised position statement of the American College of Medical Genetics and Genomics:
- Recommends certified medical genetics or genetic counselor-to interpret test results in light of personal and family history
- The consumer should be fully informed regarding what the test can and cannot say about his or her health.
- The consumer implications of genetic test results for family members.
- The scientific evidence base describing the validity and utility of a genetic test should be clearly stated
The general public and the health care provider community need to be aware of the potential utility and limitations of such tests.
High-Risk Genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Breast Cancer Risk</th>
<th>Age</th>
<th>Other Cancer Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1/2</td>
<td>Up to 83%</td>
<td>25-29</td>
<td>Colon, pancreatic, ovarian, prostate, melanoma</td>
</tr>
<tr>
<td>CDH1</td>
<td>39-52%</td>
<td>30</td>
<td>Consider based on family history</td>
</tr>
<tr>
<td>PTEN</td>
<td>Up to 80%</td>
<td>30-35</td>
<td>Recommend</td>
</tr>
<tr>
<td>STK11</td>
<td>45-50%</td>
<td>25</td>
<td>Lobular</td>
</tr>
<tr>
<td>TP53</td>
<td>Up to 79%</td>
<td>20-29</td>
<td>Recommend</td>
</tr>
</tbody>
</table>

Moderate-Risk Genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Breast Cancer Risk</th>
<th>Age</th>
<th>Other Cancer Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>24-48%*</td>
<td>40</td>
<td>Consider based on family history</td>
</tr>
<tr>
<td>CHEK2</td>
<td>30%*</td>
<td>40</td>
<td>Recommend</td>
</tr>
<tr>
<td>NBN</td>
<td>Up to 30%</td>
<td>40</td>
<td>Recommend</td>
</tr>
<tr>
<td>NF1</td>
<td>Elevated</td>
<td>30-50</td>
<td>Recommend</td>
</tr>
<tr>
<td>PALB2</td>
<td>33%*</td>
<td>30</td>
<td>Endometrial, thyroid, renal, colorectal, melanoma</td>
</tr>
<tr>
<td>BARD1</td>
<td>Elevated</td>
<td>IE</td>
<td></td>
</tr>
<tr>
<td>MRE11A</td>
<td>Elevated</td>
<td>IE</td>
<td></td>
</tr>
</tbody>
</table>

* IE: Insufficient Evidence

DCG Genetics Evaluation Process

1. **Referral to DCG**
2. **Triaging**
3. **Pre-test Consultation/Testing**
4. **Follow-up and counseling**
5. **Post-test consultation/testing**
6. **Follow-up if necessary**

The Gene Team

- Rae Wruble, RN, MBA
- Jessica Ordonez, MS, CGC
- Amanda Hodgkins, MMSc, CGC
- Arelis E. Martir-Negron, MD, FACMG
- Franklyn Key
- Cristina Flanagan, MMSc, GC
- Miriam Vargas, MA
- Jeff Boyd, PhD

Miami Cancer Institute

DCG Genetics Evaluation Process

High-Risk Genes

- ATM: 24-48%
- CHEK2: 30%
- NBN: Up to 30%
- NF1: Elevated
- PALB2: 33%
- BARD1: Elevated
- MRE11A: Elevated

Moderate-Risk Genes

- ATM: 24-48%
- CHEK2: 30%
- NBN: Up to 30%
- NF1: Elevated
- PALB2: 33%
- BARD1: Elevated
- MRE11A: Elevated

IE: Insufficient Evidence
References

- Genet Med advance online publication 17 December 2015
- NCCN guidelines 2017
- ACMG website: American College of Genetic and Genomics statement Direct-to-consumer genetic testing